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Abstract: 

Seagrasses are marine flowering plants that provide key ecological services. In recent decades, 

multiple stressors have caused a worldwide decline in seagrass beds. Changes in bottom friction 

associated with seagrass loss are expected to influence the ability of estuarine systems to trap 

sediment inputs through local and regional changes in hydrodynamics. Herein, we document a 

numerical study using six historical maps of seagrass distribution in Barnegat Bay, USA, to 

demonstrate that reductions in seagrass coverage destabilize estuarine systems, decreasing flood-

dominance in areas affected by seagrass disappearance and increasing bed-shear stress values across 

the entire back-barrier basin. Furthermore, we reveal how seagrass decline has considerably 

increased the impact of wind-waves on marsh edges between 1968 and 2009. From a comparison 

with a numerical experiment without submerged aquatic vegetation, we estimate that up to 40% of 
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the computed wave thrust on marsh boundaries can be reduced by seagrass beds and we find that 

the location of a seagrass patch in addition to its aerial extent plays a crucial role in this attenuation 

process. This study highlights the benefits of seagrass meadows in enhancing estuarine resilience 

and reducing marsh-edge retreat by wind-wave attack, which is recognized as a chief agent in 

lateral marsh loss. 

 

Keywords: seagrass, COAWST, ecosystem services, coastal resilience, tidal asymmetry.  

 

1. Introduction  

Seagrasses are marine flowering plants that can form dense underwater meadows. They are 

typically found in shallow depths with sufficient light levels. Seagrasses act as ecological engineers, 

modifying the physical and ecological environment [e.g., Carniello et al., 2016]. For instance, by 

reducing sediment resuspension, seagrasses can produce adequate light conditions to stimulate their 

own biomass production [Dennison et al., 1993; Orth et al., 2006; Carr et al., 2010]. Furthermore by 

stabilizing sediments, seagrasses enhance their survival rate during extreme storm conditions 

[Terrados and Duarte, 2000; Madsen et al., 2001; Cardoso et al., 2004]. Seagrasses provide critical 

ecosystem services such as nutrient cycling, organic carbon production and export, and enhanced 

biodiversity [Moriarty and Boon, 1989; Koch, 2001; Waycott et al., 2009]. Unfortunately, many 

studies have documented a large-scale seagrass decline due to global, regional and local stressors 

[Cambridge et al., 1986; Short and Burdick, 1996; Orth et al., 2006]. Moreover, extreme weather 

events (e.g. hurricanes, tsunamis) can threaten seagrass communities through meadow uprooting 

and burial caused by increased sediment loads [Preen et al., 1995; Koch, 1999].  

Numerous studies have assessed the role of submerged aquatic vegetation (SAV) on flow and 

sediment transport at small scales in laboratory conditions [Dijkstra and Uittenbogaard, 2010; Nepf, 

2012]. Sediment convergence and divergence, and the ensuing erosional and depositional patterns, 

are largely influenced by changes in the velocity field as a consequence of flow deflection and 

increased friction across seagrass meadows [Fonseca et al., 1982; Koch et al., 2006, Peterson et al., 
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2004]. Large horizontal velocity gradients are generally present between the vegetated and bare 

beds, and the vertical velocity profile presents significant discontinuities at the interface between 

the water column occupied by the canopy and the free flow over it [e.g., Gambi et al., 1990; Koch, 

2001; Ghisalberti & Nepf, 2002]. Apart from their capacity to modify tidal currents, seagrasses 

influence waves [e.g., Fonseca & Cahalan, 1992]. Indeed, their ability to reduce wave energy has 

been recognized as an important ecosystem service [Madsen et al., 2001]; several field studies and 

laboratory experiments have investigated the non-linear response of their buffering function to 

changes in vegetation characteristics [e.g., Bouma et al., 2010; Fonseca and Cahalan, 1992; Paul 

and Amos, 2011].  

Previous numerical modelling studies have investigated the impact of climate change and 

water quality on seagrass decline [Carr et al., 2010; Carr et al., 2012]. In addition, Van der Heide et 

al. [2007] have demonstrated how the positive feedbacks between seagrass presence and turbidity in 

the water column might rapidly shift seagrass habitats from a stable state with clear water and high 

light levels to a state with strong light attenuation and no seagrass cover [Carr et al., 2010]. 

However, the role of seagrass has rarely been quantified at a regional scale [Ganthy et al., 2013; 

Donatelli et al., 2018a; Nardin et al., 2018], and there is a paucity of studies investigating the impact 

of changes in seagrass extent on tidal asymmetry and wave thrust attenuation along marsh 

boundaries using large-scale historical seagrass distribution maps [e.g., Donatelli et al., 2018a].  

In this study, we use numerical simulations to analyse how variations in seagrass coverage 

influence the hydrodynamics across an entire back-barrier estuary located in New Jersey, USA. Six 

historical seagrass coverage maps of the Barnegat Bay Little-Egg Harbor system for the period 

1968-2009 have been used. We used the Coupled Ocean Atmosphere-Wave Sediment Transport 

(COAWST) modelling system [Warner et al., 2010] and the associated submerged aquatic 

vegetation model, recently implemented by Beudin et al., [2017a] to determine tidal water level 

fluctuations and wind-waves within the estuary in different years. Contrary to a simple drag 

increase parameterization [e.g., Morin et al., 2000], the new vegetation module provides a more 
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physically based approach to simulate the three-dimensional effect of vegetation on the mean and 

turbulent flow [e.g., Lapentina & Sheng, 2014; Marjoribanks et al., 2014].  

In this investigation, we first focus on the separate impact of seagrass on tidal propagation and wave 

height; we then explore changes in shear stress and wave thrust on marsh boundaries due to the 

compound wave and tidal actions. Our study suggests that seagrass presence can play a key role in 

protecting salt marshes against wind-wave attack. We also show that seagrass presence shortens the 

period of flood and reduces shear stresses on the estuarine seabed, which in turn influences the 

capacity of estuarine systems to capture and store sediment inputs from rivers and the ocean. These 

outcomes are relevant for the long-term survival of coastal bays [e.g., Fagherazzi et al., 2014] and 

suggest that seagrass can provide significant coastal protection [Temmerman et al., 2013].  
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 2. Study site 

The Barnegat Bay-Little Harbor estuary (BB-LEH) is a shallow lagoon-type estuary located in New 

Jersey, USA. The back-barrier bay is approximately 70 km long with a width ranging from 2.0 to 

6.5 km, and an average water depth of 1.5 m [Hunchak-Kariouk et al., 1999]. The lagoon is 

composed of three shallow bays (Barnegat Bay, Manahawkin Bay, and Little Egg Harbor) and is 

connected to the ocean through two inlets (Little Egg Inlet and Barnegat Inlet). Tides are mainly 

semidiurnal, with the    harmonic being the dominant constituent. Offshore, the tidal amplitude is 

~1 m but energy dissipation through the inlets decreases the amplitude within the bay to a minimum 

of 0.2 m [Aretxabaleta et al., 2014]. Circulation patterns are strongly influenced by winds [Kennish 

et al., 2001; Defne & Ganju, 2014]. 

In BB-LEH, the submerged aquatic vegetation (SAV) is characterized by two main species: Zostera 

marina and Ruppia maritima. As showed in recent studies [Bologna et al., 2000], seagrass coverage 

has decreased by 62% over the last several decades; the total loss is estimated as 2000-3000 ha in 

30 years (from 1960 to 1990). The main causes of the seagrass decline are related to the shading 

effect of phytoplankton blooms, increased growth of epiphytic algae, and wasting disease [Bologna 

et al., 2000; Kennish, 2001; Kennish et al., 2007a].  

The bathymetry of the model used in this study is based on the National Ocean Hydrographic 

Survey data [NOAA-NOS, 2012] updated with field measurements [Miselis et al., 2012]. Since the 

1940s there have been negligible bathymetric changes [Defne and Ganju, 2014] and even Hurricane 

Sandy did not alter the estuary’s bathymetry over large spatial scale [Miselis et al., 2015]. The 

bathymetry of the study area and historical seagrass coverage are illustrated in Figure 1 of Donatelli 

et al. [2019] and Figure 1 in this manuscript (Figure 1g illustrating a potential future scenario with 

no seagrass).  

 

3. Methods 



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

The hydrodynamics of the system have been simulated using the COAWST (Coupled-Ocean-

Atmosphere-Wave-Sediment Transport Modeling System) modeling framework [Warner et al., 

2010]. In this study, the circulation model ROMS [Shchepetkin and McWilliams, 2005; Warner et 

al., 2008] and the wave model SWAN [Booij et al., 1999] have been fully coupled on the same 

computational grid, with data exchange every 600 s. ROMS (Regional Ocean Modeling System) is 

a three-dimensional, free surface, finite-difference, terrain following model that solves the Reynold-

Averaged Navier-Stokes (RANS) equations using the hydrostatic and Boussinesq assumptions 

[Haidvogel et al., 2008]. SWAN (Simulating WAves Nearshore) is a third-generation spectral wave 

model based on the action balance equation [Booij et al., 1999]. The model simulates the generation 

and propagation of wind-waves accounting for shifting in relative frequency due to variations in 

water depth and currents, depth-induced refraction, wave-wave interactions and dissipation (white-

capping, depth-induced breaking and bottom friction). The number of interior cells is 160 x 800 in 

cross-bay and along-bay directions with 7 vertical layers equally spaced with cell size varying from 

40 to 200 m. The model is forced at the seaward boundaries with tides, using a combination of 

Flather [1976] and Chapman [1985] boundary conditions; a radiation boundary condition Orlanski 

[1976] is prescribed on the landward boundary. The tidal constituents (  ,   ,   ,   ,  ,   ,   , 

   and   ) are extracted from the ADCIRC tidal database for the North Atlantic Ocean [Mukai et 

al., 2002]. The model framework has been implemented and calibrated by Defne and Ganju [2014]. 

The model was calibrated by changing the bottom roughness coefficient to attain the best agreement 

between model results and water level data and water discharge measurements collected by the U.S. 

Geological Survey in March 2012 [Defne & Ganju, 2014]. The calibration did not include SAV-

hydrodynamic feedbacks. The friction exerted by the bed on flow is computed using a bottom 

boundary layer formulation [Warner et al., 2008] that includes enhanced wave based apparent 

roughness [Madsen, 1994]. The wave thrust (the integral along the vertical of the dynamic pressure 

of waves) is explicitly computed by the model following Tonelli et al. [2010], and Leonardi et al. 

[2016]. The flow-vegetation interaction is computed using the vegetation module recently 
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implemented in COAWST [Beudin et al., 2017; Kalra et al., 2017]. The flow-vegetation module 

includes plant posture-dependent three-dimensional drag, in-canopy wave-induced streaming, and 

production of turbulent kinetic energy and enstrophy for the vertical mixing parameterization; the 

spatially averaged vegetation drag force is approximated using a quadratic drag law and the effect 

of plant flexibility on drag is computed using the approach of Luhar and Nepf [2011]. The selected 

turbulence model is the k–ε scheme which accounts for extra dissipation and turbulence kinetic 

energy production due to vegetation [Uittenbogaard, 2003]. Similarly, the wave dissipation due to 

vegetation is accounted by the model modifying the source term of the action balance equation 

following the formulation of Mendez and Losada [2004]. The other external contributions to wave 

energy such as wind, wave breaking, bottom dissipation and nonlinear waves interactions are 

computed as follows: i) wind energy input according to Cavalieri and Malanotte-Rizzoli [1981] and 

Komen et al., [1984] formulations for the linear and exponential wind growth respectively; ii) 

bottom friction following Madsen [1988]; iii) whitecapping following Komen et al., [1984]. An 

idealized wind field was used, as these numerical experiments are not intended to quantify the real 

wave thrust on marsh boundaries but are built with the goal to unravel the effect of seagrass loss on 

wave energy. Different scenarios were considered for the wind forcing characterized by winds of 

constant speed (5, 10 and 15 m/s) blowing from south-west and south-east (Figure 1h) for the entire 

simulation period. As wave action on marsh edges is strongly related to tidal level [Tonelli et al., 

2010], we ran the simulations for a spring-neap tidal cycle. The temporal evolution of the study site 

has not been considered and the present-day morphology has been used for each year. Particularly, 

recent studies [e.g. Leonardi, et al., 2016a, b] show that marshes are eroding at around 0.5-2 m/year, 

with the highest erosion rate registered in Great Bay. The resolution of the model domain is such 

that morphological changes due to marsh edge erosion cannot be taken into account at these erosion 

rates; therefore, we focus solely on the impact of seagrass coverage on waves and tides by adopting 

an exploratory model approach [Murray, 2007]. 
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Salt marsh and seagrass coverage data were derived from the CRSSA’s (Center for Remote 

Sensing and Spatial Analysis) geographic information systems (GIS) database. Vegetation 

parameters are listed in Table 2 of Donatelli et al. [2019] nominally selected using Kennish et al. 

[2013] for guidance. Simulations are run implementing different seagrass coverages corresponding 

to the years 1968, 1979, 1987, 1999, 2003, 2009, and for a test case without seagrasses [1968 map, 

U.S. Army Corps of Engineers, 1976; 1979 map, Macomber and Allen, 1979; 1987 map, Joseph et 

al., 1992; 1999 map, McClain and McHale 1996; Bologna et al., 2000; 2003 and 2009 maps, 

Lathrop and Haag, 2011].  
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4. Results 

From 1968 until 2009, the extent of seagrass meadows within the Barnegat Bay-Little Egg Harbor 

system largely declined (Figure 1, Figure 2; Table 1 in Donatelli et al. [2019]). Figure 2 shows the 

area colonized by seagrass as a function of water depth for each year. The impact of seagrass loss 

on tidal propagation was evaluated following classic harmonic analysis using T_TIDE [Pawlowicz 

et al., 2002], and by computing the spatial distribution of the amplitude and phase lag of the    

constituent within the entire back-barrier basin. For coastal areas with multiple inlets, water levels 

are controlled by the interaction between tidal forcing propagating from each inlet, and changes in 

bottom friction that can alter their relative phase. A comparison between amplitude and phase lag 

values for the scenario with maximum seagrass coverage (year 1979) and a scenario without 

seagrass reveals that the phase lag of the tidal wave coming from Great Bay and directed to 

Barnegat Bay decreased with seagrass removal. As a consequence, the tidal amplitude within the 

entire northern part of the estuary increases for the non-seagrass case, because the tidal waves from 

Barnegat Inlet and from Great Bay have a similar phase and become additive. 

Seagrass loss also influences tidal asymmetry. Asymmetric tides are important for the 

transport and deposition of sediments in shallow estuaries [Aubrey and Speer, 1985]. Changes in 

tidal asymmetry were calculated following the formulation of Friedrichs and Aubrey [1988] and are 

depicted in Figure 4. The amplitude and phase ratios between the fourth-diurnal    constituent and 

the semidiurnal    constituent have been calculated. Our results suggest that seagrass meadows 

tend to enhance the flood dominance of the system increasing the    to    water level amplitude 

ratio, as tidal nonlinearities are enhanced.  

In this study, we also evaluated the influence of seagrass beds on locally generated wind-

waves for winds of 5, 10, and 15 m/s blowing from the southwest and southeast. Wind directions 

and speeds were chosen based on the most frequent winds (Figure 1h), with southwest winds 

maximizing fetch in the southern half of the estuary. Figure 5 presents the distribution of mean 

wave heights as a function of water depth in the non-seagrass case and for the scenarios with 
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maximum (year 1979) and minimum (year 2009) seagrass coverage. The mean wave height is the 

mean value throughout the entire simulation computed at each cell. Our results show that the 

presence of seagrass attenuates waves across the entire bay, although this damping effect is more 

limited on bare beds (Figure 6). Colored areas in Figure 5 indicate locations where some seagrass is 

present, while no seagrass is present in the white areas of the plot. Colored areas do not necessary 

have 100% seagrass coverage, and red areas have the highest seagrass presence. Figure 6 

distinguishes areas with and without seagrass meadows for every depth. For areas with meadows, 

the reduction in wave height peaks where seagrass presence is maximum. In contrast, the reduction 

in wave height over bare beds is more uniform across all depths with small decreases occurring 

where seagrass presence is maximum as well as across transitional depth values above which no 

seagrass are present. Results for all wind speed values are presented in the supplementary material 

(Figure 3-4 in Donatelli et al. [2019]). 

Seagrass loss increases the action of waves and tides at the basin bottom. The distributions 

of shear stresses are presented in Figure 7. The presence of seagrass largely increases the extent of 

basin areas with shear stress values smaller than 0.1 Pa. In addition, seagrass removal rises the 

lateral wave thrust exerted on marsh boundaries. The spatial distribution of wave thrust averaged 

throughout a spring-neap tidal cycle is depicted in Figure 8 for the non-seagrass case and for the 

case with maximum seagrass coverage (1979). Figure 9 shows the decrease in wave action due to 

seagrass presence with respect to the non-seagrass case over the last 50 years. Average wave thrust 

reduction in time and across the entire Bay are thus expressed in terms of percentage reduction with 

respect to the non-seagrass case (Figure 9). Our numerical findings suggest that in Barnegat Bay, 

the wave attack on marsh boundaries increased significantly between 1979 and 1987 (light blue 

areas in Figure 10), although, on average, a small reduction in seagrass coverage occurred (Figure 

10 and Table 1 in Donatelli et al. [2019]). Though the average decrease in seagrass extent was 

small, seagrass loss was greater in areas sheltering the marsh boundaries (Figure 2c in Donatelli et 
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al. [2019]). In contrary, in the last five decades, the wave thrust increased uniformly in Manahawkin 

Bay (Figure 10) as the seagrass removal was uniform.  

 

5. Discussion and conclusions 

The impact of submerged aquatic vegetation on wind waves and tides within a semi-

enclosed shallow lagoon system has been evaluated using the Barnegat Bay-Little Egg Harbor 

system as test case. The analyses are based on historical trends of seagrass distribution from 1968 to 

2009; a scenario with no seagrass represents a plausible system configuration in the near future. 

This study has shown that seagrass decline influences tidal propagation in shallow bays with 

multiple inlets. Specifically, changes in bottom friction alter the relative phase between the tidal 

waves coming from each inlet modifying water levels within the entire estuary (Figure 3).  

 Tidal asymmetry in coastal embayments and estuaries is governed by the ratio of tidal 

amplitude to mean water depth and the ratio of intertidal storage area occupied by tidal flats and salt 

marshes to that of channels [Speer and Aubrey, 1985]. Previous studies have investigated the 

impact of tidal flat elevations [e.g., Fortunato & Oliveira, 2005] and salt marsh erosion [Donatelli et 

al., 2018b] on tidal propagation and asymmetry within shallow estuaries. In this study, we show that 

seagrass also influences tidal asymmetry. For this test case, the average increase in tidal 

nonlinearities due to seagrass presence (Figure 4) is higher than the one caused by an increase in 

intertidal storage volume due to a complete removal of salt marsh areas. The latter was explored in 

Donatelli et al. [2018b]. Hence, submerged aquatic vegetation might increase the flood dominance 

of microtidal back-barrier estuaries. Particularly, the friction due to seagrasses slows the 

propagation of tidal water levels around low tide relative to high tide [Dronkers, 1986], leading to 

longer ebb and higher velocity currents during the flood phase. Moreover, we show that increased 

seagrass coverage decreases bed shear stress across the entire basin (Figure 7). These findings agree 

with previous field measurements and numerical studies [Hansen and Reidenbach, 2012; Donatelli 
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et al., 2018a], which demonstrate that seagrasses reduce bottom shear stresses within and behind 

patches, and also impact the sediment budget of coastal bays.  

 Marsh loss associated with edge erosion is a major mechanism of marsh deterioration in 

estuaries and lagoons worldwide [Schwimmer, 2001; Barbier et al., 2008; Marani et al., 2011; 

Tommasini et al., 2019]. Wind-waves are recognized as the chief erosional agent and Schwimmer 

[2001] first suggested the existence of a relationship between wave energy and marsh retreat; 

subsequent studies further corroborated this finding [e.g., Marani et al., 2011; Leonardi & 

Fagherazzi, 2014; Leonardi, et al., 2016a, b]. Tidal levels play a key role in wind-wave attack, 

determining the elevation at which waves attack the marsh edge. Wave action on marsh boundaries 

increases with tidal elevation and then drops when the marsh is submerged [Tonelli et al., 2010]. In 

this study we showed, in agreement with previous researches [e.g., Nowacki et al., 2017; Beudin et 

al., 2017b; Nardin et al. 2018], that submerged aquatic vegetation has a local effect in dampening 

waves. Indeed, seagrasses strongly reduce wave heights over meadows but have a more limited 

effect on un-vegetated flats (Figure 6). Therefore, given a certain seagrass distribution, marsh 

boundaries experience a decrease in wave attack and such decrease in wave action is significantly 

larger for those salt marshes located next to meadows.  

Our numerical results show that, over the last five decades, the wave action on salt marshes 

fringing the mainland in the Barnegat Bay-Little Egg Harbor estuary increased with seagrass loss. 

Figure 10 reveals how seagrass deterioration affected wave attack in the central and north part of 

the estuary and highlights how the disappearance of small SAV patches next to marsh boundaries 

(Table S1, Figure S2) increased the wave thrust by 35% in the period 1979-1987. These results 

highlight that, in terms of protection of the marsh boundary, the location of disappearing seagrasses 

is important.  

Our research underlines how seagrass decline can decrease bay sediment storage capacity 

and potentially enhance salt marsh lateral erosion. Because salt marsh loss reduces the ability of 

shallow estuaries to retain sediments [Donatelli et al., 2018b], this might in turn promote further 
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deterioration of salt marshes through a positive feedback loop [e.g., Ganju et al., 2017]. The 

influence of seagrasses on hydrodynamics should be explored seasonally as aboveground biomass 

peaks during June-July and declines significantly during fall, when it becomes five times smaller 

[Kennish et al., 2007b, 2008; Farnsworth, 1998; Koch et al., 2009; Hansen and Reidenbach, 2013]. 

The capacity of meadows to influence waves changes over the year and a minimum shoot density is 

necessary to initiate wave attenuation [e.g., Paul & Amos, 2011]. The lack of seasonal data in our 

study constitutes a significant gap in the understanding of how these ecosystems can affect the 

stability of coastal embayments over long time scales. 
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Figure captions 

Figure 1: Seagrass coverages (a-f) for different years, i.e. 1968, 1979, 1987, 1999, 2003 and 2009; 

base-case: no-SAV (g); wind rose for the area (wind station, station 44025 (LLNR 830), 

40°15’3’’N, 73°9’52’’W). For panels a-g green areas are locations where salt marshes are present. 

Yellow to red shading indicates areas were seagrasses are present as sparse (red), moderate (orange) 

or dense (yellow). Wind rose (h).  
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Figure 2: Area colonized by seagrass as a function of water depth for each year. Water depth data 

are binned every 0.15 m. 

 
 

Figure 3:    amplitude (cm) and phase lag (°) for year 1979 (a, c) and no SAV case (b, d). 
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Figure 4: Sea-surface amplitude ratio and sea-surface phase of    relative to    for year 1979 (a, c) 

and no SAV case (b, d). 
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Figure 5: Mean wave height (cm) as a function of water depth (m) for a wind blowing from South-

West (a) and South-East (b) with a speed of 10 m s
-1 

for three different scenarios: year 1979, year 

2009 and no SAV case. Water depth data are binned every 0.3 m. Red and green areas are water 

depths where seagrass is present, while no seagrass is present in the white areas of the plot. Red 

areas are locations where seagrass presence is maximum (see Figure 2). Coloured areas do not 

necessary have 100% seagrass coverage. 
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Figure 6: Mean wave height (cm) over bare beds (every depth in areas without vegetation) and 

meadows (every depth where seagrass meadows are present) as a function of water depth (m) for a 

wind blowing from South-West (a, b) and South-East (c, d) with a speed of 10 m s
-1

.  

Panels a, c refer to seagrass distribution of 1979, while panels b, d refer to seagrass distribution of 

2009; differences are made with respect to the no seagrass case. Water depth data are binned every 

0.3 m.  

 
 



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

Figure 7: Distribution of shear stresses (Pa) produced by a wind of 5, 10 and 15 m s
-1

 blowing from 

South-West (a, c, e) and South-East (b, d, f) for three different scenarios: year 1979, year 2009 and 

no SAV case. Shear stress data are binned every 0.05 Pa. 
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Figure 8: Mean wave thrust on marsh boundary during a spring-neap cycle for a wind blowing from 

South-West (a) and South-East (b) with a speed of 10 m s
-1 

for two different scenarios: year 1979 

and no SAV case. 
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Figure 9: Decrease in wave thrust (%) with respect to no SAV case for a wind blowing from South-

West (a) and South-East (b) with a speed of 5, 10 and 15 m s
-1 

in all the bay (Great Bay excluded). 
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Figure 10: Decrease in wave thrust (%) with respect to no SAV case for a wind blowing from 

South-West (a) and South-East (b) with a speed of 10 m s
-1 

in Manahawkin Bay and Barnegat Bay. 
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